
Page 6 FoxRockX July 2015

Using OVER with analytic
functions, Part 2
The final group of T-SQL functions that work with OVER compute and analyze
percentiles and distributions.

Tamar E. Granor, Ph.D.

In my last article, I showed how you can use
OVER	with	 the	 LAG,	 LEAD,	 FIRST_VALUE	 and	
LAST_VALUE	functions	to	put	data	from	different	
records in a partition into a single result record.
This article explores the last set of functions that
work	with	SQL	Server’s	OVER	clause;	these	involve	
percentiles and distributions.

Dividing records into n-tiles
My	discussion	of	OVER	started	(in	 the	May,	2014	
issue)	 with	 using	 it	 to	 assign	 ranks	 to	 records.	
The	 ROW_NUMBER,	 RANK	 and	DENSE_RANK	
functions discussed there assign an integer to each
result record representing its position in the set.
Each	of	the	three	functions	handles	ties	differently.

A	 fourth	 function	 in	 that	group,	NTILE,	divides	
the	 records	up	as	evenly	as	possible	 into	a	 specified	
number of groups. The function takes a single
parameter that indicates the number of groups to create.
For	example,	the	query	in	Listing 1	(SalesQuartiles.sql	
in	 this	month’s	downloads)	 computes	 the	 total	 sales	
for each salesperson by year, and then divides each
year’s	sales	into	four	groups	(quartiles)	from	lowest	to	
highest. Figure 1 shows partial results; as you can see,
when the number of records in the partition can’t be
divided	evenly	 into	 the	specified	number	of	groups,	
earlier groups get an extra record.

Listing 1. The NTILE function divides each partition into a
specified number of groups.
WITH csrAnnualSales
(SalesPersonID, OrderYear, TotalSales)

AS

(SELECT SalesPersonID, YEAR(OrderDate),
 SUM(SubTotal) AS TotalSales
 FROM [Sales].[SalesOrderHeader]
 WHERE SalesPersonID IS NOT NULL
 GROUP BY SalesPersonID, YEAR(OrderDate))

SELECT SalesPersonID, OrderYear, TotalSales,
 NTILE(4) OVER
 (PARTITION BY OrderYear
 ORDER BY TotalSales) AS Quartile
 FROM csrAnnualSales

If	you	change	the	parameter	to	NTILE()	to	5	(as	
in Listing	2),	you	get	quintiles	instead	of	quartiles,	
as in Figure 2.

Figure 1. NTILE makes the groups as even as possible.
Here, there are 10 records for 2011, so groups 1 and 2 have 3
records each, while groups 3 and 4 have 2 apiece.

Figure 2. Here, 5 was passed to NTILE(), so there are five
groups for each year. As before, the group sizes are as even
as possible.

July 2015 FoxRockX Page 7

Listing 2. The parameter to NTILE() determines how many
groups the records in each partition are divided into.
 NTILE(5) OVER
 (PARTITION BY OrderYear
 ORDER BY TotalSales) AS Quintile

Like	the	other	ranking	functions,	NTILE	dates	
back	to	SQL	Server	2005.

Showing distribution of records
The	analytical	function	group,	added	in	SQL	Server	
2012, offers ways to rank the records relatively. The
CUME_DIST()	 and	 PERCENT_RANK()	 functions	
both assign each record a value between 0 and 1
representing its position in the partition based
on	 the	 specified	 order	 for	 the	 partition.	 The	 two	
functions differ in whether any record is assigned
0;	that	difference	in	the	first	record	of	the	partition	
leads to different results throughout.

The easiest way to understand the difference
between these functions, and between these two
and	 the	 RANK	 function	 described	 in	 my	 May,	
2014	article,	 is	 to	 look	at	 the	results.	The	query	in	
Listing 3	(RankAndDistribution.sql	in	this	month’s	
downloads)	computes	sales	by	salesperson	by	year,	
and then applies a series of analytics to the data.
Partial results are shown in Figure	3.

Listing 3. T-SQL offers several ways to show the distribution
of data.
WITH csrAnnualSales
 (SalesPersonID, OrderYear, TotalSales)
AS
(SELECT SalesPersonID, YEAR(OrderDate),
 SUM(SubTotal) AS TotalSales
 FROM [Sales].[SalesOrderHeader]
 WHERE SalesPersonID IS NOT NULL
 GROUP BY SalesPersonID, YEAR(OrderDate))

SELECT SalesPersonID, OrderYear, TotalSales,
 CUME_DIST() OVER
 (PARTITION BY OrderYear

 ORDER BY TotalSales) AS CumeDist,
 PERCENT_RANK() OVER
 (PARTITION BY OrderYear
 ORDER BY TotalSales) AS PctRank,
 RANK() OVER
 (PARTITION BY OrderYear
 ORDER BY TotalSales) AS Rank,
 COUNT(SalesPersonID) OVER
 (PARTITION BY OrderYear
 ORDER BY TotalSales
 RANGE BETWEEN UNBOUNDED PRECEDING
 AND UNBOUNDED FOLLOWING)
 AS GroupCount,
 CAST(1.00 * RANK() OVER
 (PARTITION BY OrderYear
 ORDER BY TotalSales) /
 COUNT(SalesPersonID) OVER
 (PARTITION BY OrderYear
 ORDER BY TotalSales
 RANGE BETWEEN UNBOUNDED PRECEDING
 AND UNBOUNDED FOLLOWING)
 AS decimal(5,2)) AS ComputedDist
 FROM csrAnnualSales

Consider the results for 2011. There are 10
records, each with a different value for TotalSales.
CUME_DIST	divides	them	into	ten	evenly-spaced	
groups.	 PERCENT_RANK	 does	 the	 same,	 but	
the	first	record	always	has	a	rank	of	0.	The	query	
also demonstrates that you can actually compute
CUME_DIST	 by	dividing	 the	RANK	of	 a	 row	by	
the	number	of	rows	in	the	partition	(that	is	COUNT	
applied	to	the	same	partition).

One thing this example doesn’t show is what
happens when there are ties in the data. That I
used	 RANK	 (rather	 than	 RECORD_NUMBER)	
when	 computing	 the	 equivalent	 of	 CUME_DIST	
should	give	you	a	hint,	though.	Both	CUME_DIST	
and	 PERCENT_RANK	 assign	 the	 same	 result	
to records with the same sort value. An updated
version	 of	 a	 query	 that	 appeared	 in	 my	 May,	
2014	 article	 demonstrates.	 The	 query	 in	 Listing	 4
	(EmployeeRankByDept.sql	 in	 this	month’s	down-
loads)	 ranks	 employees	 in	 each	 department	 by	
how long they’ve been working there. As you can

Figure 3. CUME_DIST and PERCENT_RANK give similar but not identical results.

Page 8 FoxRockX July 2015

see in the partial results in Figure	4	when multiple
employees have the same start date, those employ-
ees	share	the	same	result	both	for	CUME_DIST	and	
for	PERCENT_RANK.

Listing 4. Both CUME_DIST and PERCENT_RANK assign the
same value to ties.
SELECT FirstName, LastName, StartDate,
 Department.Name,
 RANK() OVER
 (PARTITION BY Department.DepartmentID
 ORDER BY StartDate) AS EmployeeRank,
 CUME_DIST() OVER
 (PARTITION BY Department.DepartmentID
 ORDER BY StartDate),
 PERCENT_RANK() OVER
 (PARTITION BY Department.DepartmentID
 ORDER BY StartDate)
FROM HumanResources.Employee
 JOIN HumanResources.EmployeeDepartmentHistory
 EDH
 ON Employee.BusinessEntityID =
 EDH.BusinessEntityID
 JOIN HumanResources.Department
 ON EDH.DepartmentID =
 Department.DepartmentID
 JOIN Person.Person
 ON Employee.BusinessEntityID =
 Person.BusinessEntityID
 WHERE EndDate IS null

This	 query	 also	 helps	 to	 understand	 exactly	
what	these	two	functions	compute.	CUME_DIST	is	
the fraction of records in the partition with the same
value as or a lower value than the current record
for the ordering expression. So, there are 11 Sales
employees	who	started	on	31-May-2011	or	earlier;	
that’s divided by 18 (the total number of employees
in the Sales department, which you can’t tell from
this	figure).	That	gives	the	result	0.61111	shown	for	
all nine employees who started that day.

The	 formula	 for	 PERCENT_RANK	 is	 much	
less obvious. It’s one less than rank divided by
one	 less	 than	 the	 group	 size,	 that	 is	 (RANK-1)/
(COUNT-1).	Subtracting	one	from	the	rank	ensures	

that	PERCENT_RANK	always	begins	with	0.	The	
SQL	 Server	 documentation	 describes	 this	 as	 the	
“relative rank of a row within a group of rows.”

You	 can	 also	 consider	 this	 the	 percentile	 into	
which the record falls. Though I was taught that
you never have a 100th percentile, a little research
shows that some methods for computing percentile
do, in fact, result in a 100th	percentile.	Note	though	
that, if there is a tie for the greatest value, then no
record	in	that	partition	has	PERCENT_RANK	=	1.

You’re	 likely	 to	 want	 to	 multiply	 both	
CUME_DIST	and	PERCENT_RANK	by	100	to	get	
the familiar percentage values we’re used to deal-
ing with.

Searching by percentile
The	last	two	analytical	functions,	PERCENT_CONT	
and	PERCENT_DISC,	let	you	find	the	cut-off	value	
for	a	particular	percentile.	Each	accepts	a	decimal	
value indicating which percentile is desired; for
example,	specify	.5	to	return	the	median,	that	is,	the	
value	at	the	50th percentile, and specify .99 to return
the value at the 99th percentile.

The syntax for these functions is a little different
than for any of the other functions you can use with
OVER.	The	syntax	for	PERCENTILE_DISC	is	shown	
in Listing	5;	the	syntax	for	PERCENTILE_CONT	is	
identical except, of course, for the function name.

Figure 4. Records with the same value for the ordering expression are assigned the same result by both CUME_DIST and
PERCENT_RANK.

July 2015 FoxRockX Page 9

Listing 5. The two percentile functions use a different syntax
than the other functions that work with OVER.
PERCENTILE_DISC(number)
 WITHIN GROUP (ORDER BY order_by_expression
 [ASC | DESC])
 OVER ([PARTITION BY <partition_by_expr>])

As	 usual,	 the	 PARTITION	 BY	 clause	 lets	
you break the results up into groups and apply
the	 function	 separately	 to	 each	 group.	While	 the	
	PARTITION	BY	clause	is	optional	here,	if	you	want	
to apply the function to the whole result set as one
group,	you	still	have	to	include	the	OVER	keyword;	
follow it with empty parentheses.

The	 WITHIN	 GROUP	 clause	 sets	 the	 order	
used to determine percentiles.

The expression you pass to the function must
be a number between 0 and 1. (That’s a difference
from	the	other	functions	that	work	with	OVER.)

The difference between the two functions
is in whether they return only values in the
data	 	(PERCENTILE_DISC—“DISC”	 stands	 for	
“	discrete”)	 or	 can	 interpolate	 between	 values	
to	 give	 a	 more	 accurate	 answer	 (PERCENTILE_
CONT—“CONT”	stands	for	“continuous”).	

The	 query	 in	 Listing	 6	 (TenurePercentile.sql	
in	 this	 month’s	 downloads)	 shows	 the	 number	
of people in each department, and their average
tenure in the department in days (that is, how
many	days	they’ve	been	in	that	department).	Then,	
it	 computes	 the	 25th,	 50th	 and	 75th percentiles for
tenure in the department, using each of the two
methods. Figure	5	shows partial results.

Listing 6. PERCENTILE_CONT and PERCENTILE_DISC
return the value that represents a specified percentile.
WITH csrTenure (DepartmentID, DeptName,
 BusinessEntityID, DaysInDept)
AS

(SELECT Department.DepartmentID,
 Department.Name AS DeptName,

 EDH.BusinessEntityID,
 DATEDIFF(DD,StartDate,GETDATE())
 FROM
 HumanResources.EmployeeDepartmentHistory
 EDH
 JOIN HumanResources.Department
 ON EDH.DepartmentID =
 Department.DepartmentID
 WHERE EndDate IS null)

SELECT DISTINCT DeptName,
 COUNT(BusinessEntityID) OVER
 (PARTITION BY DepartmentID)
 AS DeptSize,
 AVG(DaysInDept) OVER
 (PARTITION BY DepartmentID)
 AS AvgTenure,
 PERCENTILE_CONT(.25)
 WITHIN GROUP (ORDER BY DaysInDept)
 OVER (PARTITION BY DepartmentID)
 AS Cont25Pctile,
 PERCENTILE_CONT(.5)
 WITHIN GROUP (ORDER BY DaysInDept)
 OVER (PARTITION BY DepartmentID)
 AS ContMedian,
 PERCENTILE_CONT(.75)
 WITHIN GROUP (ORDER BY DaysInDept)
 OVER (PARTITION BY DepartmentID)
 AS Cont75Pctile,
 PERCENTILE_DISC(.25)
 WITHIN GROUP (ORDER BY DaysInDept)
 OVER (PARTITION BY DepartmentID)
 AS Disc25Pctile,
 PERCENTILE_DISC(.5)
 WITHIN GROUP (ORDER BY DaysInDept)
 OVER (PARTITION BY DepartmentID)
 AS DiscMedian,
 PERCENTILE_DISC(.75)
 WITHIN GROUP (ORDER BY DaysInDept)
 OVER (PARTITION BY DepartmentID)
 AS Disc75Pctile
 FROM csrTenure
 ORDER BY DeptName

The most obvious use for these functions is
computing medians, but you might use them to
build a table of percentiles for a standardized
test, as well. I can imagine using them in political
 discussions about income and taxation, too.

Figure 5. Because PERCENTILE_CONT interpolates, the values it returns may not be in the original data. PERCENTILE_DISC always
returns an actual data value.

Page 10 FoxRockX July 2015

Story OVER
I’ve now looked at each group of functions that
works	 with	 OVER	 through	 SQL	 Server	 2014	
(though there are a few aggregate functions I
haven’t demonstrated, in particular, the ones for
standard	deviation	and	variance).	They	provide	a	
wide	range	of	capabilities	and	make	many	queries	
much simpler than they’d otherwise be.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s
Solutions, LLC. She has developed and enhanced numer-
ous Visual FoxPro applications for businesses and other

organizations. Tamar is author or co-author of a dozen
books including the award winning Hacker’s Guide to
Visual FoxPro, Microsoft Office Automation with Visual
FoxPro and Taming Visual FoxPro’s SQL. Her latest
collaboration is VFPX: Open Source Treasure for the
VFP Developer, available at www.foxrockx.com. Her
other books are available from Hentzenwerke Publish-
ing (www.hentzenwerke.com). Tamar was a Microsoft
Support Most Valuable Professional from the program's
inception in 1993 until 2011. She is one of the organizers
of the annual Southwest Fox conference. In 2007, Tamar
received the Visual FoxPro Community Lifetime Achieve-
ment Award. You can reach her at tamar@thegran-
ors.com or through www.tomorrowssolutionsllc.com.

DOWNLOAD
Subscribers can download FR201507_code.zip in the SourceCode sub directory of
the document portal. It contains the following files:

doughennig201507_code.zip
Source code for the article “Scheduling Tasks from VFP” from Doug Hennig

tamargranor201507_code.zip
Source code for the article “Using OVER with analytic functions, Part 2”
from Tamar E. Granor, Ph.D.

rickschummer201507code.zip
Source code for the article “VFPX: ThemedTitleBar” from Rick Schummer

Lesson:	Spell	out	what	the	words	mean.	Defi-
nite the exact functionality.

Conclusions
These may seem like trivial lessons. As you read
through them, you may not be learning anything
new as much as being reminded about things that
you knew once upon a time but haven't needed in
a long time now. So consider this article as a check-
list. Airline pilots, even the most experienced, still
use	a	checklist	every	time	they	get	in	a	plane.	You	
should too.

I've compiled a similar group of stories, together
with corresponding lessons, on code. Based on the
feedback I get on this article, I'll put them together
in a future article.

Author Profile
Whil Hentzen is an independent software developer based in
Milwaukee, Wisconsin (as opposed to Milwaukee, Minnesota,
as many people think.) His writing has killed many trees over
the years, but none since 2007. He has realized he really sort
of misses it. You can reach him at whil@whilhentzen.com

Continued from Page 23

